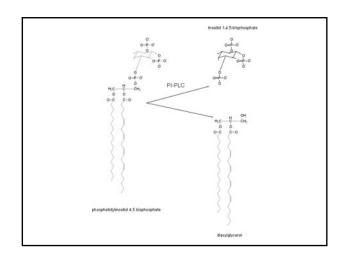
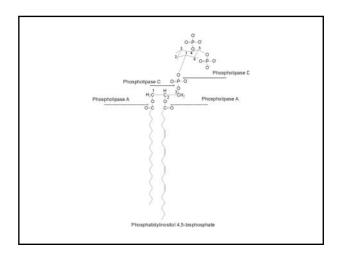
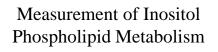
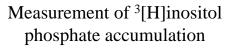
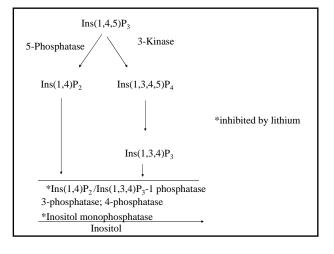

The Nine Inositol Isomers 11 th Calcium signaling course May 2-13, 2011 н он allo cis Md. Shahidul Islam, M.D., Ph.D. <u>myo</u> muco Karolinska Institutet, Institutionen för klinisk neo forskning och utbildning, Forekningscentrum Södersjukhuset Shaisl@ki.se D-chiro(+) -chiro(-) scyllo

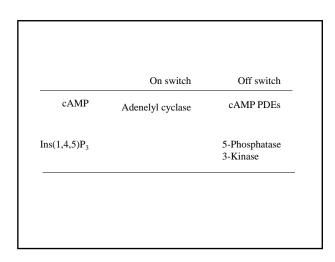


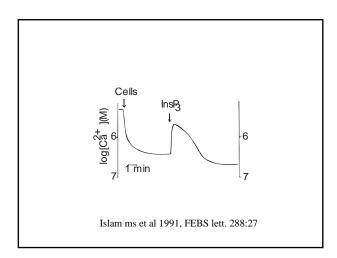


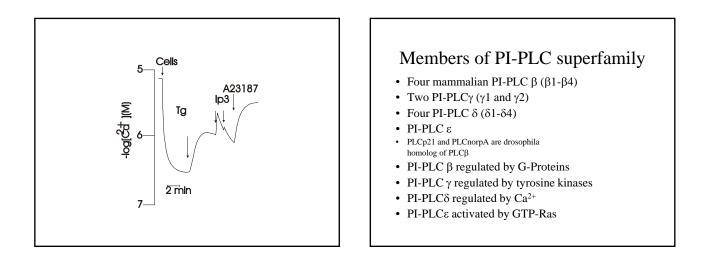









- ³²Pi incorporation into phospholipids
- ³[H]inositol phosphate accummulation
 Separation of ³[H]inositol phosphates by Dowex anion exchange chromatography
- Measurement of mass of Ins(1,4,5)P3 by radio receptor assay



- Use inositol-free medium
 (RPMI contain 190 μM inositol)
 - Use inositol-free serum (FBS 550 μ M; Horse
 - serum 200 µM inositol)
- Add carrier inositol
- No antibiotics
- Label for prolonged period
- Use Lithium
 - Inhibits Ins-1-P/Ins(1,3,4) $P_{\rm 3}$ phosphatase and inositol monophasphatase

Pleckstrin/PH domain

- Pleckstrin: platelet protein; substrate of PKC
- PH domain: about 100 amino acid module
- PH domain containing proteins PI-PLC GTPases Nucleotide exchange factors

Many KInases GTPase activating proteins

• Many PH containing proteins interact with Gproteins and membrane phospholipids

SH2 Domain

- About 100 aa domains: homology to the sequences found in nonreceptor tyrosine kinases of src family
- Respond to tyrosine phosphorylation by binding to the phosphorylated sequences
- On protein-protein interaction through SH2 ٠ domains, one of the protein may be relocalized

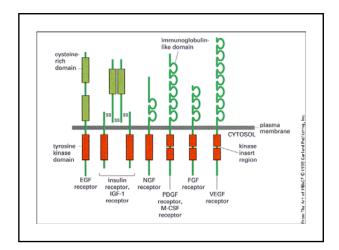
SH3 domain

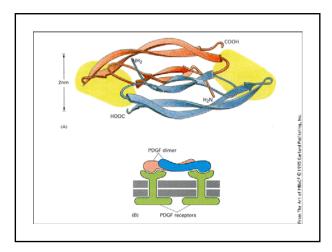
- 60-85 aa stretches
- Frequently occur together with SH2 domain
- Involved in interaction with proteins containing proline-rich sequences
- SH3 domain on $\text{PLC}\gamma$ may associate with actin network

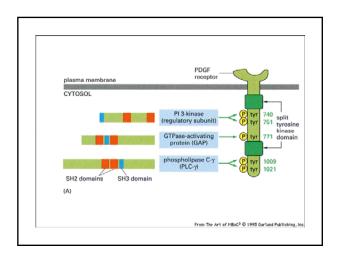
Activation of PI-PLC β by α subunit of G protein

- alpha subunits of Gq family: Gq, G11, G14-16
- bind to C terminal part of PI-PLC: G-box
- activate mainly PI-PLC $\beta 1$ and $\beta 3$

Regulation of PI-PLC


- PI-PLC β by G proteins
- PI-PLC γ by tyrosine kinase receptors
- PI-PLC δ by Ca²⁺?


Activation of PI-PLC β by $\beta\gamma$ subunit of G protein


- Gby released from G-proteins, specially from G_1
- Binds at the N terminal part of PI-PLC (PH domain)
- Activates mainly PI-PLC $\beta 2$ and $\beta 3$

PI-PLC γ is activated by tyrosine phosphorylation

- Tyrosine kinase receptors e.g. PDGF
- Ligand binding, receptor dimerization
- Mutual transphosphorylation of tyrosines on the receptor
- SH2 domain of PI-PLC γ docks on to the phosphorylated tyrosines
- PI-PLCγ is phosphorylated on tyrosine residues and this activates PI-PLC

Activation of PI-PLCγ requires two events

- 1. Association with the tyrosine phosphorylated receptor through SH2 domain
- 2. Phosphorylation of specific tyrosine residues on the PI-PLC γ